3.942 \(\int \frac{(a+b x^2+c x^4)^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=151 \[ -\frac{3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{16 \sqrt{a}}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}+\frac{3}{4} b \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right ) \]

[Out]

(-3*(b - 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*x^2) - (a + b*x^2 + c*x^4)^(3/2)/(4*x^4) - (3*(b^2 + 4*a*c)*ArcT
anh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(16*Sqrt[a]) + (3*b*Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(2*S
qrt[c]*Sqrt[a + b*x^2 + c*x^4])])/4

________________________________________________________________________________________

Rubi [A]  time = 0.163027, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35, Rules used = {1114, 732, 812, 843, 621, 206, 724} \[ -\frac{3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{16 \sqrt{a}}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}+\frac{3}{4} b \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2 + c*x^4)^(3/2)/x^5,x]

[Out]

(-3*(b - 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*x^2) - (a + b*x^2 + c*x^4)^(3/2)/(4*x^4) - (3*(b^2 + 4*a*c)*ArcT
anh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(16*Sqrt[a]) + (3*b*Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(2*S
qrt[c]*Sqrt[a + b*x^2 + c*x^4])])/4

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2+c x^4\right )^{3/2}}{x^5} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\left (a+b x+c x^2\right )^{3/2}}{x^3} \, dx,x,x^2\right )\\ &=-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}+\frac{3}{8} \operatorname{Subst}\left (\int \frac{(b+2 c x) \sqrt{a+b x+c x^2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}-\frac{3}{16} \operatorname{Subst}\left (\int \frac{-b^2-4 a c-4 b c x}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}+\frac{1}{4} (3 b c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^2\right )+\frac{1}{16} \left (3 \left (b^2+4 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^2\right )\\ &=-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}+\frac{1}{2} (3 b c) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^2}{\sqrt{a+b x^2+c x^4}}\right )-\frac{1}{8} \left (3 \left (b^2+4 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^2}{\sqrt{a+b x^2+c x^4}}\right )\\ &=-\frac{3 \left (b-2 c x^2\right ) \sqrt{a+b x^2+c x^4}}{8 x^2}-\frac{\left (a+b x^2+c x^4\right )^{3/2}}{4 x^4}-\frac{3 \left (b^2+4 a c\right ) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{16 \sqrt{a}}+\frac{3}{4} b \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )\\ \end{align*}

Mathematica [A]  time = 0.1728, size = 134, normalized size = 0.89 \[ \frac{1}{16} \left (-\frac{3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{\sqrt{a}}-\frac{2 \sqrt{a+b x^2+c x^4} \left (2 a+5 b x^2-4 c x^4\right )}{x^4}+12 b \sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x^2}{2 \sqrt{c} \sqrt{a+b x^2+c x^4}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2 + c*x^4)^(3/2)/x^5,x]

[Out]

((-2*(2*a + 5*b*x^2 - 4*c*x^4)*Sqrt[a + b*x^2 + c*x^4])/x^4 - (3*(b^2 + 4*a*c)*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a
]*Sqrt[a + b*x^2 + c*x^4])])/Sqrt[a] + 12*b*Sqrt[c]*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])]
)/16

________________________________________________________________________________________

Maple [A]  time = 0.171, size = 174, normalized size = 1.2 \begin{align*}{\frac{c}{2}\sqrt{c{x}^{4}+b{x}^{2}+a}}+{\frac{3\,b}{4}\sqrt{c}\ln \left ({ \left ({\frac{b}{2}}+c{x}^{2} \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) }-{\frac{3\,c}{4}\sqrt{a}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ) }-{\frac{3\,{b}^{2}}{16}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}-{\frac{a}{4\,{x}^{4}}\sqrt{c{x}^{4}+b{x}^{2}+a}}-{\frac{5\,b}{8\,{x}^{2}}\sqrt{c{x}^{4}+b{x}^{2}+a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(3/2)/x^5,x)

[Out]

1/2*c*(c*x^4+b*x^2+a)^(1/2)+3/4*b*c^(1/2)*ln((1/2*b+c*x^2)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))-3/4*a^(1/2)*ln((2*a+
b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)*c-3/16/a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)^(1/2))/x^2)
*b^2-1/4*a/x^4*(c*x^4+b*x^2+a)^(1/2)-5/8*b/x^2*(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.43635, size = 1670, normalized size = 11.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^5,x, algorithm="fricas")

[Out]

[1/32*(12*a*b*sqrt(c)*x^4*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) -
 4*a*c) + 3*(b^2 + 4*a*c)*sqrt(a)*x^4*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 +
 2*a)*sqrt(a) + 8*a^2)/x^4) + 4*(4*a*c*x^4 - 5*a*b*x^2 - 2*a^2)*sqrt(c*x^4 + b*x^2 + a))/(a*x^4), -1/32*(24*a*
b*sqrt(-c)*x^4*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) - 3*(b^2 +
 4*a*c)*sqrt(a)*x^4*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*
a^2)/x^4) - 4*(4*a*c*x^4 - 5*a*b*x^2 - 2*a^2)*sqrt(c*x^4 + b*x^2 + a))/(a*x^4), 1/16*(6*a*b*sqrt(c)*x^4*log(-8
*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) + 3*(b^2 + 4*a*c)*sqrt(-
a)*x^4*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + 2*(4*a*c*x^4 - 5
*a*b*x^2 - 2*a^2)*sqrt(c*x^4 + b*x^2 + a))/(a*x^4), -1/16*(12*a*b*sqrt(-c)*x^4*arctan(1/2*sqrt(c*x^4 + b*x^2 +
 a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) - 3*(b^2 + 4*a*c)*sqrt(-a)*x^4*arctan(1/2*sqrt(c*x^4 + b
*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*(4*a*c*x^4 - 5*a*b*x^2 - 2*a^2)*sqrt(c*x^4 + b
*x^2 + a))/(a*x^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2} + c x^{4}\right )^{\frac{3}{2}}}{x^{5}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(3/2)/x**5,x)

[Out]

Integral((a + b*x**2 + c*x**4)**(3/2)/x**5, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}{x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^5,x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)/x^5, x)